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Summary 

A model is presented for the behaviour of an instantaneously released heavy gas cloud in calm 
conditions, or sufficiently close to the source that gravity effects dominate ambient turbulence 
effects. The object of this model is to clarify how turbulence generated from the initial potential 
energy of the cloud may effect the subsequent dilution. 

The model is an integral one which treats the turbulent energy in the cloud as a dynamic variable 
which determines the entrainment rate. It is constructured such that overall dissipation of 
mechanical energy is guaranteed. The turbulent energy of the cloud released from. rest is thus 
generated explicitly from the initial potential energy, and the entrainment rate may depend on 
the initial aspect (height to radius) ratio, and the initial density, of the cloud. An investigation 
of the properties of the model indicates that these effects, whilst present, are small. 

Consequently, this more detailed study of the energy budget of the cloud, lends considerable 
support to simple models which treat the early dilution of the cloud as “edge entrainment” with 
an entrainment velocity proportional to the spreading rate. 

1. Introduction 

The Thorney Island trials have provided an extensive data base which will 
aid enormously the development of mathematical models for use in hazard 
analysis. Indeed, the experiments were designed [ 1,2] not only to improve our 
general understanding of heavy gas dispersion, but also to distinguish between 
the predictions of a profusion of existing models. ( See Refs. [ 3-51 for a review 
and in particular Figs. 10.2-10.5 of Ref. [ 11. ) 

The broad features of the data lend support to a class of models wherein the 
cloud is pictured as a right cylinder of radius R, volume V and average depth 

(1.1) 

and evolving according to equations of the form 
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%J -= 
dt f (1.2 1 

~=(2nRH)u~+(7e)u~ (1.3) 

where the spreading velocity U,, and the top* and edge* entrainment velocities 
UT and U,, as well as the downwind advection velocity are modelled in terms 
of the geometric variables R, V,H and the relative density excess 

A’ = (P-P,)/P, (1.4) 

As the entrainment process involves isothermal mixing of inert gases, the 
buoyancy parameter 

b=i A’V 0.5) 

must be conserved, and the mean concentration is inversely proportional to 
the volume V. 

The trials give considerable information about the various velocity param- 
eters of such a model. In particular 

U,=1.07 (gA’H)“2 (1.6) 

is a good representation [ 6,7] of the observed spreading velocity in the early 
stages (but after the short period of radial acceleration). The widely adopted 
edge entrainment model 

u, =cr,uf (1.7) 

is consistent with the data [ 81 for d!x - -0.7. These are also consistent with 
earlier, smaller scale trials ] 91. 

In many models of this type [ 3-51 the top entrainment velocity UT is 
modelled in terms of the ambient atmospheric turbulence and the gravitational 
stability of the cloud, and for initially dense clouds its effect is negligible com- 
pared to that of U, until the cloud has diluted sufficiently or until the cloud 
top area has become sufficiently large. Again the Thorney Island data are con- 
sistent with such ideas depending on the model for UT. 

Thus the prospects for this type of simple box model look good, in so far as 
the Thorney Island data go. However, the trials were all performed at a similar 

*We shall adhere to the common practice of referring to these terms as edge and top entrainment. 
While, however, the form of eqn. (1.3) is suggestive of entrainment through the edge and top, the 
simple box model cannot provide any direct insight into where the entrainment actually takes 
place. It may in fact, be better to think of these terms as gravity-powered and wind-powered 
entrainment, respectively. 
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high initial aspect ratio (Ho/& = 1) and almost all with very similar density 
excess (4, = 1) *. In fact both the initial potential energy of the cloud and the 
deduced value of the edge entrainment coefficient &!x (which can only lie 
between 0 and 1) are ‘large’. Given that the edge entrainment model is essen- 
tially one of gravity-powered entrainment, it may be reasonable then to con- 
jecture that these observations are related, and that LYE may in general depend 
on Ho/R0 and on A& We shall investigate this question here in the framework 
of an integral model. Because we are interested in the gravity dominated, “edge 
entraining” phase, we shall consider a very dense cloud or, equivalently, very 
calm atmospheric conditions. 

The two principal ideas behind our approach are that entrainment is related 
to the level of turbulence within the medium into which it takes place, and that 
the turbulence intensity in a cloud spreading from rest in a calm atmosphere 
is determined by its initial potential energy. We shall therefore present a model 
,based on the energy budget of the cloud and examine its solution in order to 
draw conclusions about the entrainment rate. 

2. The energy budget of the cloud 

Consider a cloud released instantaneously at ambient temperature into calm 
air. Let the mean kinetic energy associated with the radial expansion of the 
cloud be T, let the potential energy of the cloud be P, and the turbulent kinetic 
energy within the cloud be K. The energy budget is schematically: 
dT -= 
dt 

r-Q--n 

dp 
-= --r 
dt 

+I 

dK 
dt - 

17-I-D (2.1) 

dE -- 
dt - 

-Q -D 

Here r is the rate at which gravity converts potential energy into kinetic, Q is 
the rate at which the cloud does work on the surrounding air, 17 is the rate of 
turbulent energy production, I is the rate of increase of potential energy due to 
entrainment**, and D is the rate of dissipation of turbulent kinetic energy into 

*The philosophy guiding the design of the trials was to obtain a high quality data set covering a 
limited region of the parameter space, rather than to spread effort more thinly. 
**This increase arises when the entrained air is mixed with the gas already in the cloud. 
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heat*. r, 9,I7, I, and D are all greater than or equal to zero. This guarantees 
that the total energy 

E=T+P+K 

is dissipated. 

(2.2) 

The gravity spreading term r and the work term A2 have their counterpart 
in most existing box models (see Refs. [ 3-51) and are relatively well under- 
stood phenomenologically for self-similar radial spread. Because we are inter- 
ested in the way the initial potential energy is converted to kinetic and turbulent 
energy, we shall also model these terms in the initial, radially accelerating 
phase. 

To model entrainment in the framework of eqn. (2.1) the entrainment term 
I must be modelled in terms of the turbulence level K. It is convenient to do 
this via the familiar concept of an entrainment velocity. The turbulence is 
modelled in terms of the production rate I7 and dissipation rate D. The 
entrainment rate depends implicitly on these via the turbulent energy K. Such 
a model constitutes on integral version of a turbulence closure scheme. 

3. A model for a cloud in calm conditions 

3.1 Entrainment 
Let us write the entrainment equation as 

dV 
dT= W xR2 (3.1) 

where W is an entrainment velocity. This is consistent with the idea that even 
“edge” entrainment appears to take place in an annular region on top of the 
cloud behind the head [ lo]. (But eqn. (3.1) reduces to eqn. (1.3 ) if one writes 
W= U,+BHU,/R.) 

Further, let us model the entrainment rate as 

W=“.r& 
(Ri)@ 

where 

k,K 
PV 

(3.2) 

(3.3) 

*Note that whilst we have not mentioned direct dissipation of mean kinetic energy T into heat, 
or transport of turbulent energy out of the cloud, these phenomena can be incorporated into eqn. 
(2.1) simply by redefinitions of I7 and D. Since these effects are not expected to dominate, and 
our models of II and D will in any case contain free parameters, we shall not consider them further 
here. 
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is the mean specific turbulent energy of the cloud, and 

J&&gA’H 
k (3.4) 

is a bulk Richardson number*. &r and ,u are dimensionless constants. Equation 
(3.2) is consistent with widely accepted ideas (see [ 31 for a review) of 
suppression of entrainment across a stable density interface. (However, owing 
to the different turbulence production mechanism, there is no reason to sup- 
pose that o!T or ,u should be similar to values found in experiments where the 
entrainment is not associated with an advancing gravity front. ) 

The entrainment model is completed by the observation that for isothermal 
flows (such as the Thorney Island trials) entrainment must conserve the 
buoyancy variable 

b=;gA’ V (3.5) 

3.2 Spreading 
The usual spreading law eqn. (1.2) is a good approximation to what is 

observed in a quasi-steady situation. It does not model the initial radial accel- 
eration of a cloud released from rest. It is essential to model this phase in order 
to derive the energy budget of the cloud in terms of the initial potential energy. 
To do this we introduce a shape factor s (see also Refs. [ 3,11,12] ) such that 
the height of the cloud at the front is Hs. Thus ifs is larger than 1 then, from 
eqn. (1.1) , the cloud has a concave top. 

Balancing the hydrostatic pressure drop across the front of the cloud with 
an air resistance pressure proportional to paU2 gives the radial behaviour 

dRu -= 
dt (3.6) 

with 

U= u(gA’Hs) 1’2 (3.7) 

The distribution of gas within the cloud and hence the shape factor s is gov- 
erned by the radial momentum equation of the flow. We shall approximate 
(the integral of) this by 

dU wu 4&! (P--p,)(l-s)H CpU,,h -- Pdt+Pa H - - 
R H (3.8) 

*Of course eqn. (3.2) cannot be valid down to very small values of Ri. We shall see, however, that 
Ri (thus defined) achieves a minimum value at some finite time and thereafter increases (in 
absolutely calm conditions). For current purposes, then eqn. (3.2) should be adequately although 
it might require modification should one wish to take the model further. 
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The left-hand side of this equation is just V-’ (d/dt)pVU. We have assumed 
that the radial momentum of the cloud (proportional to pVU) is unaffected 
by entrainment, and hence the right-hand side is independent of TM The first 
term on the right is the gravity driving term and is found from a self-similar 
solution [ 121 of the shallow layer equations appropriate in the inviscid, zero- 
entrainment limit. For s < 1 (a cloud thinner at the edge than in the middle) 
the gravity term acts to throw material outwards; for s > 1 (a cloud with a 
raised edge) it pulls material inwards. The final term on the right represents 
the effects of friction with the ground. C is a friction coefficient. 

In the model presented here s may increase from zero as the cloud accelerates 
radially from rest. The simple spreading behaviour of eqn. (1.3) will arise ifs 
is constant and the flow is self-similar. It is possible [ 31 that the front condi- 
tion eqn. (3.7) should be modified when the flow is not self-similar. It is not, 
however, necessary to do this to obtain the desired effect of a transfer of poten- 
tial to kinetic energy. Furthermore such a modification has no effect at large 
time. We therefore use eqn. (3.7)) which we assume to be a sufficiently good 
approximation if the free parameter K is optimised. 

It is also possible that eqn. (3.8), being derived from shallow layer theory, 
will not give a quantitative fit to data in the deep cloud regime. Our primary 
motivation is to include the desired effects in a simple way, in order to render 
an analytic approach as tractable as possible and gain an understanding of the 
dilution mechanisms. Equations (3.7) and (3.8) give simple description of a 
cloud spreading radially allowing both radial acceleration and deceleration in 
a way which should be fairly accurate at low aspect ratio and qualitatively 
correct at higher aspect ratio. We shall discuss the nature of “deep cloud” cor- 
rections in Section 4.7. 

3.3 Turbulence 
Equations (3.1-3.8) together with the definitions 

H=-& (3.9) 

and 

A’ = (P-AI/A (3.10) 

from Section 1 comprise ten equations for the eleven variables R, V, H, U, s, 
W, K, k, Ri, p, and A’. It remains to close the system of equations with a model 
for the turbulent energy K. In the interests of clarity let us write down our 
model for K and then discuss the derivation. The proposed equation is 
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dK --_=a n bps UHs2 
dt f R 

- ;p.bW-a,, H pvk3’2 (3 11) . 

PRODUCTION BUOYANT DISSIPATION 

DESTRUCTION 

where a, aD, Cl, and l2 are dimensionless constants. 
The dissipation term in eqn. (3.11) is the term “D” of eqn. (2.1). It simply 

corresponds to the assumption of a specific dissipation rate proportional to 
k ‘j2/H. 

The buoyant destruction term corresponds to “l” in eqn. (2.1). This has 
been derived by estimating the potential energy of the cloud to be 

P = &pad’ VH (3.12) 

It follows that 

dP UH n -- 
dt - - nbQ, - R +~&bW (3.13) 

The two terms on the right of eqn. (3.13) correspond exactly to “-r” and 
“Y of eqn. (2.1)) and hence the second term gives the buoyant destruction rate 
ineqn. (3.11). 

The three production terms of eqn. (3.11) correspond (in toto) to the term 
“n” in eqn. (2.1) . The first represents the rate of production at the front, 
which is modelled as a fraction cyf of the rate of doing work, which is 
[ ;gp,d’Hs] [ 2nRHs] U. 

The other production terms cover the whole area of 
inferred from eqn. (3.8) which implies 

vvw cQvv$ 
$ ( bpvu2) =2nbp,(l-s) y-Qa T- 

2H 

the cloud. They are 

(3.14) 

This constitutes an approximate* kinetic energy equation. The first term on 
the right includes gravity a.nd front resistance effects. The second term rep- 
resents the loss of mean kinetic energy in mixing with the ambient air, and the 
third the loss by friction with the ground. 

The loss of energy given by these last two terms is assumed to occur by shear 
production of turbulent energy which is then dissipated. Thus they contribute 
to the production term “17” of eqn. (2.1) . In eqn. (3.11) they are introduced 

*A total kinetic energy of $pVU’ is found for a cylindrical cloud with velocity field U(r) = Ur/R 
for 0 G r < R. If the cloud deviates from this idealisation (in shape or velocity field) then eqn. 
(3.14) may be regarded as an approximation to the kinetic energy equation. 
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with coefficients tl, cz of order 1, which are to allow for uncertainties in esti- 
mating the mean kinetic energy via eqn. (3.14). For example, the mean (non- 
turbulent) kinetic energy of the cloud includes a part due to the height-aver- 
aged flow and a part due to the “rolling” motion (seen clearly at the front in, 
for example, the Thorney Island trials), which is too regular to be considered 
as turbulence. We have assumed that both of these are of order pVU2. Uncer- 
tainty in the amount of energy in this rolling motion is thus translated into 
uncertainty in the precise values of af, cl, and ez_ 

Equations (3.1-3.11) now form a closed set for eleven variables. These are 
not precisely of the structure of eqn. ( 2.1) but, as we have seen, that structure 
has been used in the derivation of the turbulence equation (3.11). 

3.4 Solution of the model 
The model presented in eqns. ( 3.1-3.11) is not exactly soluble. We shall 

present approximate, analytic solutions valid in the large time limit. We shall 
see that the case p < 1 differs significantly from that with ,u d 1. A numerical 
solution will be presented for the case ,M= 1, and examined in the light of data 
from the Thorney Island trials. The asymptotic analytic solutions will be com- 
pared with simple edge-entrainment models. 

4. Analysis of the model 

4.1 Spreading rkgimes 
By analogy with a spreading pool [ 11,121 we expect up to three spreading 

regimes: an initial regime in which radial acceleration effects arc important; 
an intermediate regime which is described by the simpler ideas of Section 1 
(with R - ,/t) ; and a late time regime in which friction effects become impor- 
tant resulting in a collapse of the gravity head and a breakdown of the R - Jt 
spreading law*. We are primarily interested in the first two of these, and it 
therefore simplifies the analysis considerably if we set C= 0 for the remainder 
of this work. Thus when we refer to “asymptotically large” time in the follow- 
ing sections it should be interpreted as large enough that the effects of the 
initial regime are unimportant but not so large that friction effects become 
significant**. 

4.2 The large time behaviour of the solution 
We shall give here the asymptotic (large time) behaviour of the (C= 0) 

solution. It can be verified straightforwardly (if a little tediously) by substi- 

*This may also be expected owing to turbulence in the atmosphere in all but absolutely calm 
conditions. 
**The clear R - ,/t spreading r&me observed in the Thorney Island trials [ 6 ] can be taken as 
evidence that C=O is a good approximation for a considerable time; in general we expect 
C= 0 (10M3) which will mean a very late onset of the importance of friction terms. 
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tuting these expressions into the equations of Section 3. We shall assume the 
Boussinesq approximation, A’ << 1, is valid. (This is actually only guaranteed 
asymptotically ifp< 1, as we shall see.) The large time (~-CO, R+oo) spread- 
ing behaviour is given by 

(4.1) 

where b is the buoyancy parameter defined in eqn. (3.5) andp is a dimension- 
less constant. This implies 

R2 =2pb’/2t (4.2) 
The cloud dilution is given by 

;p=zl 

(4.3) 
= p {I- A (“)-‘(“‘+...> 

2p2(~--1) R, 
;P>l 

with 

A’=& !$ ( > (4.4) 

where ( Ro, V,,) , the initial values of (R, V) , have been introduced to ensure 
that all the constants 3, B, cy, and A are dimensionless. The aspect ratio behaves 
as 

(4.5) 
-3 

= - 2p2;_-1 ($)-(l+zP)+...} ;P>l 

where 

fl=BHJR,, ; B &Ho/R0 (4.6) 
The large time (large R) behaviour of the other variables is conveniently writ- 
ten in terms of that of U and of (H/R). We find 
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W=201#U 0 
H 

[ 1 
1+2(@-I)/3 

= 
aT Y- 

R 
u 

H 

[ 1 

2/3 

= 

5 
u2 

and 

- Z/3 

there we have defined 

A= (1+2_U) -I (4.10) 

and 

y = ~~~5/~~~~ (4.11) 

In each case the shape factor s is asymptotically constant 

s= bw2 (4.12) 

Finally the independent constants a, /I, A, B, andp introduced in the solution 
are constrained to satisfy 

p2(4--Ic2) 

K2 
= 4-2iq32 ;$U=Sl 

(4.13) 
= 1 ;lu>l 1 

4 

= a ;1”<1 

2aD 
= cr(1+- 

aT 
;JJ=l (4.14) 

0 

4 
P 

@K ;p>l 
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4.3 The role of the parameter p 
The asymptotic solution for p > 1 is manifestly very different from that with 

p < 1. (Note that the p = 1 results here are not recovered simply by taking the 
limit p+ 1 in the p > 1 solution as it is not permissible to interchange the limits 
p-+ 1 and R+ 0~). ) The critical nature of the point p= 1 is illustrated by looking 
at the relative importance of the buoyant destruction (B.D. ) and dissipation 
(DISS. ) terms in the turbulence eqn. (3.11). We readily find 

B.D. @r 1 -=- 
DISS. 2cun (l+d’) 

(Ri)lvP (4.15) 

Therefore, for large Richardson number, this ratio is determined crucially by 
the value of p. For P-C 1 buoyant destruction dominates dissipation as the 
mechanism for removing turbulent energy. For ,u = 1 they are of the same order 
of magnitude ( independent of the Richardson number). For ,U > 1 the entrain- 
ment is sufficiently suppressed that dissipation dominates buoyant destruc- 
tion. In fact for ,UU> 1 the entrainment suppression is sufficient to stop all 
entrainment at large time (as Ri defined in eqn. ( 3.4 ) becomes large) resulting 
in a cloud of finite, non-zero concentration. This has not been observed (even 
if it were the true situation, one would need to follow a dense cloud for a long 
time in absolutely calm conditions to demonstrate it experimentally) and we 
shall not pursue the ,u > 1 case further here. 

4.4 The solution for p 6 I 
For p Q 1, the qualitative nature of the solution is not strongly dependent* 

on ,u. It resembles the simple model of Section 1 with Froude number p and 
“edge-entrainment” coefficient (x, which are related to the input parameters 
af, K, cl, an, and &r via eqns. (4.13) and (4.14). 

This is particularly remarkable in view of the entrainment model in eqns. 
(3.1-3.4) which is quite different in appearance from that of Section 1. It is 
well known [ 4,131 that the model in eqn. (3.1) cannot conserve energy if 
W- U. By imposing conservation of energy we have obtained eqn. ( 4.7 ) , which 
( for ,u d 1) is responsible for the similarity between the results of this model 
and that of Section 1. Note also from eqn. (4.8) that the turbulence intensity 
is not simply proportional to I?, but also has a factor dependent on the evo- 
lution of the aspect ratio. 

Neither of the parameters LY orp depends upon the initial aspect ratio Ho/Ro. 
This gives a behaviour p-9 --cy of the mean concentration with universal LY, 
irrespective of the initial cloud, and answers in part the question we set out to 
investigate. 

The asymptotic analysis, however, does not give any information about j? 
(the value of which depends upon the dilution process, and therefore upon the 

*Not even for the case p = 0 where there is no suppression of entrainment. 



level of turbulence, during the initial, radially accelerating phase ) . Nor does it 
indicate (without being carried further) how rapidly the asymptote is 
approached. One might, for example, expect the Boussinesq approximation, 
on which the asymptotic analysis relies, to become valid later for denser clouds 
and hence give a slower approach to the asymptote. 

4.5 Numerical solution for p = 1 
To examine the solution further, we have obtained numerical solutions for 

the case ,u= 1 with various values of the other input parameters. Comparison 
of the asymptotic solution with Thorney Island results guides our choice of 
input parameters. In particular we shall demand p= 1, a= 0.7 [ 6-81. Thus 
eqns. (4.13) and (4.14) require 

K = 1.054 

(a-<,+%n/,,) = o*43 
(4.16) 

By taking K = 1.054 and choosing o!f, cl, an, and a!T to satisfy eqn. (4.16) we 
can thus investigate the dependence of the results on the initial density, the 
initial aspect ratio, as well as on the degrees of freedom in the choice of af, cl, 
a,,, and QT. 

To investigate the dependence of dh we specify* cXf =0.5, an = 1.45, c&r= 5.0, 
<I =2.0 and take Ah =O.l, 1.0, and 2.0. The results bear out the asymptotic 
analysis. In Fig. la we have plotted dimensionless radius against dimensionless 
time**. 

The radial behaviour R, (t*) is almost completely independent of A,$ and 
such dependence as there is confined to early times ( t, < 10). The volume (or 
alternatively the concentration C, = V( 0 )/V) , see Fig. lb) has the calculated 
asymptotic behaviour (see eqn. (4.3 ) and thereafter) and the numerical results 
give p =PR,/H, z 0.9 for these cases, but the convergence to the asysymptote 
is rather slower than for R, ( t, ) for each of the values of A&. 

Figure Ic shows 12, ( t, ) for which the asymptote is now exactly specified by 

*These values of (cq, q,, cxT, and tl) are of the expected order of magnitude and satisfy eqn. 
(4.16). The choice is otherwise arbitrary. We discuss the sensitivity of cyu and o+ below but do 
not attempt to explore the whole 3-dimensional parameter space of values satisfying eqn. (4.16). 
**Dimensionless variables are defined by R, = R/R,, U, = U/U,,, C, = V,/V, k, = k/U:, t, = t/to, 
where U,= (gA~Ho)1’2, and Ro, Vu, Ho, Ah are initial values of the respective variables, and 
t, = R,/U,. The choice of these scales is not entirely arbitrary, but rather ensures that the simple 
model of Section 1 relates dimensionless variables independently of Ho/R,, and AA. furthermore in 
plots with time as the abscissa we have used 1+ 2t, because the model of Section I has R?I = 1 + 2t, 
(for unit Froude number). Deviations from a linear behaviour on a log-log plot therefore give a 
measure of the effect of the initial acceleration regime. 
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A o increasing 

Fig. la. (Dimensionless) radius as a function of dimensionless time. The initial cloud density has 
little effect. Curves for &=O.l, 1.0, and 2.0 are shown. Note that the time-scale depends on Ah 
and so the curves will appear different if dimensioned time is used. 

10-j ’ I I I I 
1 10 102 IO' 10' 

1+2t. 
Fig. lb. Concentration as a function of dimensionless time for Ah =O.l, 1.0, and 2.0. Increased 
inertia causes a slight delay in entrainment. 

eqn. (4.8) using the value of p obtained from the concentration. Convergence 
to the asymptote is rapid. There is significant dependence on A& but only in 
the initial, radially accelerating phase where the turbulent kinetic energy den- 
sity is increasing rapidly. The behaviour of the shape factor s (Fig. Id) shows 
that the initial density-dependent phase, seen in the previous figures, is asso- 
ciated with the regime where the cloud has not yet settled into a self-similar 
flow. When such a flow is established, s is constant and there are no remaining 
density effects, although a higher initial density does delay, slightly, the onset 
of self-similar flow. 
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I I I I I 
1 10 10' 103 10' 

l* 2t* 

Fig. lc. Dimensionless turbulent kinetic energy density as a function of dimensionless time for 
Ai =O.l, 1.0, and 2.0. Increased inertia delays convergence to the asymptote given in Section 4.4. 

1.2t* 

Fig. Id. The shape factor as a function of dimensionless time. 

In Figs. 2a and 2b we show results for ( CY~, (un) = (0.5, 0.145) compared 
with ( cyT, an) = (5, 1.45) with &=O.l and the other parameters as above. 
These results show that the fixed ratio &r/an does indeed imply the same slope 
of the asymptotes of V, ( t, ) , and k, ( t, ) as shown in the analysis of Section 
4.2. The value of j? however depends on a! r, being 1.44 and 0.9 for the respective 
cases. Early on, the lower value of&r causes less entrainment and higher con- 
centrations. However, at large time the higher level of turbulence correspond- 
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10-g - 

Fig. 2a. Concentration as a function of dimensionless time for different values of c+ with cyT/q, 
fixed. The asymptotes are parallel. Smaller LY~/CY,, measures slower convergence to a lower 
asymptote. 

W, ,do increasing 

lo-5- 

10-e- 

lo-'- 

10-e - 

1 10 10' 10' 10' 
l* 2t* 

Fig. 2b. Turbulent kinetic energy as a function of dimensionless time for different values of c+ 
with LY~/(Y,, fixed. 
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Fig. 3a. Concentration as a function of dimensionless time for different aspect ratios H,,/&, = 10.7, 
2, and 0.1. The asymptotes are parallel with more rapid convergence to the asymptote for small 
&I&. 

Fig. 3b. Turbulent kinetic energy as a function of dimensionless time for different aspect ratios. 
Higher initial aspect ratio gives a higher (dimensionless) turbulent energy. 
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ing to the lower values of o!r and an causes more entrainment and hence lower 
concentrations*. Hence the different values of p. It is interesting to note that 
j? may lie either side of the value 1.0 which is implied by the simpler models 
discussed in the introduction.** 

In Figs. 3a and 3b we compare results for different values of the initial aspect 
ratio. We take*** Ho/Ro= 10.7, 2 and 0.1. Other parameters are dh=O.l and 
( aTI an) = (0.5, 0.145)) and the rest as previously. All the results are consis- 
tent with the asymptotic analysis of Section 4.2. However, p depends on the 
initial aspect ratio. Furthermore, convergence of the concentration C, to the 
asymptote is very slow for large initial aspect ratio H,,/R,. For higher initial 
aspect ratio the initial dilution is less, but subsequently a higher level of tur- 
bulence (as a result of the larger initial potential energy) results in lower 
asymptotic concentrations. The effects on the concentration of varying o!r, 
with c+/(x~ fixed, and of varying Ho/R0 are summarised in Figs. 4a and 4b. 
The concentration is proportional to p-’ and the (dimensionless) turbulent 
kinetic energy to (P/c+) *13. 

4.6 Early-time concentration records from experiments 
In most of the Thorney Island trials, the concentration sensors were placed 

sufficiently far away from the source that the initial effects discussed in this 
work were not observed. However, in a few trials there were sensors close to 
the source. Figure 5 shows area-averagedconcentration as a function of dimen- 
sionless time for four such trials. The straight line is C, = (1 + 2t, ) -o.7, which 
is found to give a good approach to the onset of the concentration data (that 
is from the release to the time when the first sensor’ was reached) over the 
whole set of Phase I trials [ 141. There is some evidence that the denser releases 
lie higher in Fig. 5 than the less dense ones, and we claim qualitative agree- 
ment**** with the results of our model, shown in Fig. lb. 

Whilst the Thorney Island trials were all conducted with essentially the same 
initial aspect ratio, small scale calm-air experiments have been performed at 
different aspect ratios by Havens and Spicer [ 15,161. In their data there is 
some evidence [ 151 that the value of p in the asymptotic behaviour 
C*-p(2t*)-a may depend on the aspect ratio, but the effect, if present, is 
small. 

*Note that whilst more turbulent energy tends to encourage more entrainment, the higher rate of 
entrainment also absorbs more turbulent energy as a source of power. In the case where (in and 
c+ are altered in proportion, then, at sufficiently large time, the latter effect is predominant and 
smaller CS~ corresponds to higher levels of turbulence. 
**The concentration behaves asymptotically as 8-l (R/R,) P2U. 
***This takes the model beyond the region where its “shallow-layer” derivation is valid but does 
demonstrate the relative insensitivity to H,,/R,!. 
****In view of the simplicity of our shallow-layer derived model we cannot really expect more than 
this and do not therefore attempt a detailed fit. 



Fig. 4a. Variation of p with c+ for fixed c+/q,. 
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4.7 Further comments 
Two other recent works deserve comment. 
First, the question of how entrainment is affected by the initial aspect ratio 

of the cloud has been addressed by Fay and Zemba [ 171. In a comparison with 
wind tunnel data [ 181 they conclude that gravity driven entrainment is much 
less for clouds of low initial aspect. This, however, is misleading and stems 
from a somewhat ad hoc choice of entrainment model. In calm conditions, 
where top entrainment is absent, their model simply takes a constant volume 
increase rate given by 

dV 
dt = kFZ ‘v2o’3 (g/d;, Vi’” ) 1’2 (4.17) 
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Fig. 5. Area averaged concentration at a height of 0.4 m from the Thorney Island trial data includ- 
ing sensors near the source. (Preliminary analysis. ) 

where V, and A; are initial values of V and A’, and kFZ is a constant. The 
solution of eqn. (4.17) may be written as 

V -- 
vo - [ l+n”‘iirc(g3 ;] (4.18) 

in order to compare it with the model of Section 1: 

(4.19) 

where 

(4.20) 

Fay and Zemba observe that kFZ = 0.6 provides a good fit to data of high initial 
aspect ratio but that this value is too large to fit low aspect ratio data. However, 
our comparison of eqns. (4.18) and (4.19) between models indicates (irre- 
spective of the difference in power law) that constant LYE would correspond 
more closely to kFZ - (W,/R, ) 2’3 In the context of the model presented here, . 
then, we should expect k FZ to be smaller for low initial aspect ratio. We thus 
find that Fay and Zemba’s result is qkite consistent with constant aE. Ref. 
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[ 171, then, provides no grounds to suppose that the widely used edge entrain- 
ment model of Section 1 will not be appropriate to low aspect releases. 

Second, a very similar model to that derived in Sections 2 and 3 has very 
recently been considered by van Ulden [ 191. He has introduced more detailed 
modelling of the turbulence production mechanisms and the forces on the cloud. 
To compare his method with ours let us note that the gravity term in our 
spreading eqn. (3.8) may be expanded by substituting for the shape factor s 
from eqn. (3.7) to give 

4g (p-p.)(l-s)H/R=4gp,A’H/R-~~~ u/R (4.21) 

The terms on the left represent gravity and front-resistance forces directly 
analogous to those given in Ref. [ 191. The coefficients of the terms are slightly 
different owing to the different depth profiles assumed: we take the parabolic 
profile of the shallow self-similar solution in the limit of no entrainment; van 
Ulden ( see also Ref. [ 201) takes a uniform profile. The structure of the equa- 
tions, however, is the same in the shallow (H/R << 1) limit. For an accurate 
description of “deep” clouds one would in general expect “correction” terms 
of higher order in (H/R). Van Ulden’s model has these and he has demon- 
strated a good fit to experimental data. Furthermore, his results are qualita- 
tively consistent with ours, and we thus regard his work as giving added support 
to our own conclusions. 

5. Discussion and conclusions 

5.1 Summary 
We have presented an integral model for a heavy gas cloud spreading in calm 

conditions. In contrast to previous such models, it treats the turbulent energy 
within the cloud as an independent, dynamic variable and relates the entrain- 
ment rate to this. It does this in such a way that dissipation of mechanical 
energy is guaranteed. This has allowed us to study the dependence of the dilu- 
tion process on the initial density and on the initial aspect ratio. This study 
sheds light on the validity of simpler models for the early phases of dilution, in 
particular for initial conditions not currently covered by field trials. 

5.2 Entrainment 
Entrainment into the top of the cloud is assumed to be related to the tur- 

bulence intensity by a factor proportional to Ri -@. 
If ,u> 1, then this suppression factor is sufficient, eventually, to stop all 

entrainment as an asymptotically constant concentration is reached. In the 
absence of any experimental evidence for this, we therefore reject this case. 
(However, technically one can only look for an upper bound for p dependent 
on how long one can follow an experiment in absolutely calm conditions. ) 
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If ,u Q 1 then the resultant entrainment appears very similar to the standard 
edge entrainment model [ 3,4] discussed in the introduction. A significant dif- 
ference is that the effective edge entrainment coefficient a! is not an input 
parameter to the calculation and the derived value may depend on the initial 
density difference &, and the initial aspect ratio H,,/R,,. In fact (in the ,M= 1 
model which we have analysed in some detail) it turns out to depend on neither 
of these; the concentration goes asymptotically as t-” for a universally con- 
stant cy. However, the coefficient of t --cy does depend on HO/R0 (but hardly at 
all on A; in the range considered) and the approach to the asymptote may be 
so slow for large Ho/R0 that the concentration may descend more steeply than 
tMLY over a number of orders of magnitude in time. The size of this effect also 
depends on the coefficients of the terms involving dissipation and buoyant 
destruction of energy which may be altered in proportion without affecting the 
exponenta. 

The fact that the concentration approaches the t --01 asymptote from above 
is a natural consequence of the smaller entrainment rate in the radial accel- 
eration phase where the mean kinetic energy is building up. To see this explic- 
itly, consider the simple model defined by dR/dt= U,, dV/dt= (2xRH) U,, 
H= V/xR’, and UE= cuUfi It is straightforward to see that ( V/V,,) = (R/R,) 2cy 
in this model irrespective of the definition of 73,. Thus the small-time behav- 
iour of R translates directly into the small-time behaviour of the concentration, 
and radial acceleration implies concentration decreasing to the asymptote. 
However, whilst this simple model gives a universal curve C (R, ) independent 
of initial conditions, the more complicated, dynamic-turbulence model does 
not. We thus distinguish these two aspects of the model: on the one hand U, 
increases with U, in the acceleration phase, but on the other, the structure of 
the turbulence model means that this is not in direct proportion. 

Overall we regard the results for entrainment as lending considerable sup- 
port to the simpler models which take an “edge entrainment” proportional to 
U,. Some models have made other assumptions, such as taking a “top entrain- 
ment” proportional to U, ( see Refs. [ 3-5 ] for a review ) . Our results show how 
a consideration of the energy budget comes down strongly in favour of the edge- 
entrainment models (but of course do not rule out top entrainment in the 
regime where “atmospherically-powered’ turbulence dominates “cloud-pow- 
ered” turbulence ) . 

5.3 Buoyant destruction and dissipation of turbulence 
These terms are of the same order only in the p = 1 model (see Section 4.2 ) . 

If p is less than 1 then buoyant destruction dominates. These results contrast 
with mixing box experiments where turbulence is created away from the den- 
sity interface and dissipation is dominant typically by a factor of lO:l, over 
buoyant destruction [ 31. We believe that this contrast lends support to the 
view that entrainment into heavy gas clouds spreading in calm conditions arises 
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principally owing to the turbulence created close to the density interface from 
the interaction between the spreading cloud and the ambient air; intuitively, 
turbulence generated close to the density interface should power entrainment 
more readily than turbulence created away from the density interface, and thus 
one may expect a higher ratio of buoyant destruction to dissipation in spread- 
ing gas clouds than in mixing box experiments. Further, in the integral model 
we have treated the turbulence as averaged over the whole of the cloud, but 
should the turbulence causing entrainment be primarily at the edge, as sug- 
gested above, then we assume the difference can be absorbed into the value of 
o!T. Consequently there is no reason to suppose that c&r in our model should 
have a value close to that found in mixing box experiments. 

5.4 The turbulence intensity 
It is interesting to note that the turbulence intensity in the cloud in this 

model, given by eqn. (4.21) is not simply k - U2, nor does it correspond to any 
simple model of turbulent energy near the front being averaged over the whole 
cloud volume. Thus the model serves to illustrate that even if a simple integral 
model fits data on entrainment and spreading, one should be very wary of 
drawing simple conclusions about the level of turbulence in the cloud; the 
dynamics of turbulence make the relationship between turbulent and entrain- 
ment velocities a complicated one. 

5.5 Conclusions 
The model presented here admits the possibility of a dependence of the 

dimensionless concentration function C on the initial aspect ratio and on the 
initial relative density. The concentration goes asymptotically as p-’ (2t, > --Ly 
where B depends on the initial conditions but a! does not. The rate at which 
the concentration tends to this asymptote ( from above ) also depends upon the 
initial conditions and, in particular, for large aspect ratios may be slow, giving 
a steeper behaviour than t, --O1. However, over the parameter range we have 
considered, these effects are small (involving typically no more than a factor 
2 in concentration, even close to the source ) . In fact in areas of practical inter- 
est the results of the model resemble those of the much simpler edge entrain- 
ment model discussed in the introduction, where LY is assumed independent of 
the initial density and aspect ratio. 

Our conclusions are therefore as follows: 
We do not expect a large variation of concentration at given t, with the 

initial density or with the aspect ratio of the release. There is some evidence 
for this conclusion in existing data but more complete verification would be 
desirable. If, therefore, it is not necessary (from the hazard analysis view- 
point ) to model such effects, then it is adequate to return to the simpler models 
where edge entrainment is assumed proportional to the front velocity. The 
analysis presented here lends considerable support to this approach. 



Our model is complemented by that of van Ulden [ 19-211 which fits into 
the same framework: our results indicate why a simple model with constant 
entrainment coefficient cr independent of initial conditions may be adequate 
for most hazard analysis purposes; van Ulden’s results show that a model of 
the same structure, if extended to contain terms of higher order in H/R may 
fit high aspect ratio data accurately. 

The other effect highlighted in this work is the general deviation of the con- 
centration at early times from the asymptotic t --(y behaviour. Such behaviour 
can, if desired, be produced in a model with the “traditional” edge entrainment 
assumption, U, = ar U,, if radial acceleration effects are considered in modell- 
ing U,. However, it remains to be seen whether such an approach could give 
more than a qualitative reproduction of data such as that in Fig. 5. 

Our model indicates that “top entrainment”, in the framework of Section 1, 
need not be considered in calm conditions (whether air enters through the top 
or elsewhere is a different question) and those models which introduce it to 
the extent that they violate conservation of energy (see Refs. [ 3,4,13] for a 
review) are ruled out. 
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